Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34253420

ABSTRACT

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Commun Biol ; 4(1): 915, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312487

ABSTRACT

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , ChAdOx1 nCoV-19 , Ferrets , Macaca mulatta
3.
Nat Commun ; 12(1): 1260, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627662

ABSTRACT

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Subject(s)
COVID-19/immunology , COVID-19/virology , Lung/pathology , Lung/virology , Animals , Disease Models, Animal , Female , Immunity, Cellular/physiology , Interferon-gamma/metabolism , Macaca fascicularis , Macaca mulatta , Male , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
4.
Nat Commun ; 12(1): 81, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33398055

ABSTRACT

There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Ferrets/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Dose-Response Relationship, Drug , Female , Lung/immunology , Lung/pathology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Virus Replication/drug effects , Virus Replication/immunology , Virus Shedding/drug effects , Virus Shedding/immunology
5.
EBioMedicine ; 63: 103153, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33279857

ABSTRACT

BACKGROUND: The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS: SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS: We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION: The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING: This work was funded by Ena Respiratory, Melbourne, Australia.


Subject(s)
Lipopeptides/administration & dosage , Respiratory System/virology , SARS-CoV-2/pathogenicity , Toll-Like Receptor 2/agonists , Toll-Like Receptor 6/agonists , Virus Shedding , Administration, Intranasal , Animals , COVID-19/pathology , Disease Models, Animal , Female , Ferrets , Immunity, Innate , Lipopeptides/chemistry , Lipopeptides/pharmacology , Nasal Cavity/pathology , Nasal Cavity/virology , Pharynx/pathology , Pharynx/virology , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Respiratory System/pathology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/drug effects , COVID-19 Drug Treatment
6.
Sci Rep ; 10(1): 14289, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868837

ABSTRACT

Ebola virus (EBOV) is an enveloped, single-stranded RNA virus that can cause Ebola virus disease (EVD). It is thought that EVD survivors are protected against subsequent infection with EBOV and that neutralising antibodies to the viral surface glycoprotein (GP) are potential correlates of protection. Serological studies are vital to assess neutralising antibodies targeted to EBOV GP; however, handling of EBOV is limited to containment level 4 laboratories. Pseudotyped viruses can be used as alternatives to live viruses, which require high levels of bio-containment, in serological and viral entry assays. However, neutralisation capacity can differ among pseudotyped virus platforms. We evaluated the suitability of EBOV GP pseudotyped human immunodeficiency virus type 1 (HIV-1) and vesicular stomatitis virus (VSV) to measure the neutralising ability of plasma from EVD survivors, when compared to results from a live EBOV neutralisation assay. The sensitivity, specificity and correlation with live EBOV neutralisation were greater for the VSV-based pseudotyped virus system, which is particularly important when evaluating EBOV vaccine responses and immuno-therapeutics. Therefore, the EBOV GP pseudotyped VSV neutralisation assay reported here could be used to provide a better understanding of the putative correlates of protection against EBOV.


Subject(s)
Antibodies, Neutralizing/immunology , Ebolavirus/immunology , HIV-1/immunology , Vesiculovirus/immunology , Viral Envelope Proteins/immunology , Humans , Neutralization Tests , Viral Tropism/immunology
7.
PLoS Negl Trop Dis ; 14(7): e0008496, 2020 07.
Article in English | MEDLINE | ID: mdl-32735587

ABSTRACT

BACKGROUND: The unprecedented 2013/16 outbreak of Zaire ebolavirus (Ebola virus) in West Africa has highighted the need for rapid, high-throughput and POC diagnostic assays to enable timely detection and appropriate triaging of Ebola Virus Disease (EVD) patients. Ebola virus is highly infectious and prompt diagnosis and triage is crucial in preventing further spread within community and healthcare settings. Moreover, due to the ecology of Ebola virus it is important that newly developed diagnostic assays are suitable for use in both the healthcare environment and low resource rural locations. METHODOLOGY/PRINCIPLE FINDINGS: A LAMP assay was successfully developed with three detection formats; a real-time intercalating dye-based assay, a real-time probe-based assay to enable multiplexing and an end-point colourimetric assay to simplify interpretation for the field. All assay formats were sensitive and specific, detecting a range of Ebola virus strains isolated in 1976-2014; with Probit analysis predicting limits of detection of 243, 290 and 75 copies/reaction respectively and no cross-detection of related strains or other viral haemorrhagic fevers (VHF's). The assays are rapid, (as fast as 5-7.25 mins for real-time formats) and robust, detecting Ebola virus RNA in presence of minimally diluted bodily fluids. Moreover, when tested on patient samples from the 2013/16 outbreak, there were no false positives and 93-96% of all new case positives were detected, with only a failure to detect very low copy number samples. CONCLUSION/SIGNIFICANCE: These are a set of robust and adaptable diagnostic solutions, which are fast, easy-to-perform-and-interpret and are suitable for use on a range of platforms including portable low-power devices. They can be readily transferred to field-laboratory settings, with no specific equipment needs and are therefore ideally placed for use in locations with limited resources.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Nucleic Acid Amplification Techniques/methods , Disease Outbreaks , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/epidemiology , Humans , RNA, Viral , Sensitivity and Specificity , Sierra Leone/epidemiology
8.
PLoS Negl Trop Dis ; 14(6): e0008364, 2020 06.
Article in English | MEDLINE | ID: mdl-32492018

ABSTRACT

Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is one of the most widespread medically important arboviruses, causing human infections that result in mortality rates of up to 60%. We describe the selection of a high-affinity small protein (Affimer-NP) that binds specifically to the nucleoprotein (NP) of CCHFV. We demonstrate the interference of Affimer-NP in the RNA-binding function of CCHFV NP using fluorescence anisotropy, and its inhibitory effects on CCHFV gene expression in mammalian cells using a mini-genome system. Solution of the crystallographic structure of the complex formed by these two molecules at 2.84 Å resolution revealed the structural basis for this interference, with the Affimer-NP binding site positioned at the critical NP oligomerization interface. Finally, we validate the in vitro application of Affimer-NP for the development of enzyme-linked immunosorbent and lateral flow assays, presenting the first published point-of-care format test able to detect recombinant CCHFV NP in spiked human and animal sera.


Subject(s)
Colorimetry/methods , Diagnostic Tests, Routine/methods , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/virology , Virus Replication , Animals , Antibodies, Viral/blood , Antigens, Viral/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Humans , Immunoglobulin G/blood , Models, Molecular , Nucleoproteins/chemistry , Nucleoproteins/genetics , Protein Conformation
9.
PLoS Negl Trop Dis ; 13(7): e0007571, 2019 07.
Article in English | MEDLINE | ID: mdl-31291242

ABSTRACT

BACKGROUND: Undifferentiated febrile illness (UFI) is one of the most common reasons for people seeking healthcare in low-income countries. While illness and death due to specific infections such as malaria are often well-quantified, others are frequently uncounted and their impact underappreciated. A number of high consequence infectious diseases, including Ebola virus, are endemic or epidemic in the Federal Republic of Sudan which has experienced at least 12 UFI outbreaks, frequently associated with haemorrhage and high case fatality rates (CFR), since 2012. One of these occurred in Darfur in 2015/2016 with 594 cases and 108 deaths (CFR 18.2%). The aetiology of these outbreaks remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We report a retrospective cohort study of the 2015/2016 Darfur outbreak, using a subset of 65 of 263 outbreak samples received by the National Public Health Laboratory which met selection criteria of sufficient sample volume and epidemiological data. Clinical features included fever (95.8%), bleeding (95.7%), headache (51.6%) and arthralgia (42.2%). No epidemiological patterns indicative of person-to-person transmission or health-worker cases were reported. Samples were tested at the Public Health England Rare and Imported Pathogens Laboratory using a bespoke panel of likely pathogens including haemorrhagic fever viruses, arboviruses and Rickettsia, Leptospira and Borrelia spp. Seven (11%) were positive for Crimean-Congo haemorrhagic fever virus (CCHFV) by real-time reverse transcription PCR. The remaining samples tested negative on all assays. CONCLUSIONS/SIGNIFICANCE: CCHFV is an important cause of fever and haemorrhage in Darfur, but not the sole major source of UFI outbreaks in Sudan. Prospective studies are needed to explore other aetiologies, including novel pathogens. The presence of CCHFV has critical infection, prevention and control as well as clinical implications for future response. Our study reinforces the need to boost surveillance, lab and investigative capacity to underpin effective response, and for local and international health security.


Subject(s)
Fever/diagnosis , Hemorrhagic Fever, Crimean/diagnosis , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Disease Outbreaks , Female , Fever/epidemiology , Fever/virology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Humans , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , Sudan/epidemiology , Young Adult
10.
Sci Rep ; 9(1): 2617, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796267

ABSTRACT

An effective universal vaccine for influenza will likely need to induce virus-specific T-cells, which are the major mediator of heterosubtypic cross-protection between different subtypes of influenza A virus. In this study we characterise the cell-mediated immune response in ferrets during heterosubtypic protection induced by low-dose H1N1 virus infection against an H3N2 virus challenge, given 4 weeks later. Although the ferrets were not protected against the infection by H3N2 virus, the duration of virus shedding was shortened, and clinical disease was markedly reduced. No cross-reactive neutralizing antibodies were detected, but cross-reactive interferon-gamma-secreting T cells were detected in the circulation prior to H3N2 challenge. These T-cells peaked at 11 days post-H1N1 infection, and were strongly induced in blood and in lung following H3N2 infection. The rapid induction of interferon-gamma-secreting cells in ferrets previously infected with H1N1 virus, but not in naïve ferrets, suggests induction of memory T-cells. These results are in accord with the observations that pre-existing cross-reactive T-cells correlate with protection in humans and have implications for outbreak modelling and universal vaccine design.


Subject(s)
Cross Protection/immunology , Cross Reactions/immunology , Ferrets/immunology , Ferrets/virology , Interferon-gamma/metabolism , Lymphocytes/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Animals , Antibody Formation/immunology , Cell Count , Disease Models, Animal , Dogs , Dose-Response Relationship, Immunologic , Female , Immunity, Humoral , Inflammation/immunology , Inflammation/pathology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Madin Darby Canine Kidney Cells
11.
PLoS One ; 13(9): e0202675, 2018.
Article in English | MEDLINE | ID: mdl-30192789

ABSTRACT

Seasonal influenza virus infections cause yearly epidemics which are the source of a significant public health burden worldwide. The ferret model for human influenza A virus (IAV) is widely used and has several advantages over other animal models such as comparable symptomology, similar receptor distribution in the respiratory tract to humans and the ability to be infected with human isolates without the need for adaptation. However, a major disadvantage of the model has been a paucity of reagents for the evaluation of the cellular immune response. Investigation of T-cell mediated immunity in ferrets is crucial to vaccine development and efficacy studies. In this study we have used commercially produced antibodies to ferret interferon gamma (IFN-γ) allowing us to reliably measure influenza-specific IFN-γ as a marker of the cellular immune response using both enzyme-linked immunospot (ELISpot) and enzyme-linked immunosorbent (ELISA) techniques. Here we demonstrate the application of these tools to evaluate cellular immunity in ferrets infected with clinically relevant seasonal H1N1 and H3N2 IAV subtypes at equivalent doses. Using small heparinised blood samples we were able to observe the longitudinal influenza-specific IFN-γ responses of ferrets infected with both seasonal subtypes of IAV and found a notable increase in influenza-specific IFN-γ responses in circulating peripheral blood within 8 days post-infection. Both seasonal strains caused a well-defined pattern of influenza-specific IFN-γ responses in infected ferrets when compared to naïve animals. Additionally, we found that while the influenza specific IFN-γ responses found in peripheral circulating blood were comparable between subtypes, the influenza specific IFN-γ responses found in lung lymphocytes significantly differed. Our results suggest that there is a distinct difference between the ability of the two seasonal influenza strains to establish an infection in the lung of ferrets associated with distinct signatures of acquired immunity.


Subject(s)
Ferrets/immunology , Ferrets/virology , Immunity, Cellular , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Lung/immunology , Lung/virology , Animals , Dose-Response Relationship, Immunologic , Humans , Interferon-gamma/biosynthesis , Lung/metabolism , Species Specificity
12.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29695422

ABSTRACT

Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae, and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance.IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an "antiviral state." Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Bunyamwera virus/pathogenicity , Bunyaviridae Infections/prevention & control , Exonucleases/pharmacology , Genome, Viral , Interferons/metabolism , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Exonucleases/genetics , Exoribonucleases , HeLa Cells , High-Throughput Screening Assays , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...